2,759 research outputs found

    A density functional study of the structure of tethered chains in a binary mixture

    Full text link
    A density functional study of the structure of a layer formed by chain molecules pinned to a solid surface is presented. The chains are modeled as freely joined spheres. Segments and all components interact via Lennard-Jones (12-6) potential. The interactions of fluid molecules with the wall are described by the Lennard-Jones (9-3) potential. We analyze how different parameters of the model affect the dependence of the brush height upon the mixture composition. We consider the effect of grafting density and the parameters characterizing the interactions of fluid molecules with the substrate and with the chains as well as interactions within the mixture. The changes in the brush height correlate with the adsorption of particular components.Comment: 12 pages, 8 figure

    Ordering and order-disorder phase transition in the (1x1) monolayer chemisorbed on the (111) face of an fcc crystal

    Full text link
    In this paper we have considered a simple lattice gas model of chemisorbed monolayer which allows for the harmonic fluctuations of the bond length between the adsorbate atom and the surface site. The model also involves a short-ranged attractive potential acting between the adsorbed atoms as well as the surface periodic corrugation potential. It has been assumed that the adsorbed atoms are bonded to the uppermost layer of the substrate atoms. In particular, using Monte Carlo simulation method we have focused on the orderings appearing in the dense monolayer formed on the (111) face of an fcc solid. Within the lattice gas limit, the chemisorbed layer forms a (1x1) structure. On the other hand, when the bonds are allowed to fluctuate, three other different ordered phases have been found to be stable in the ground state. One of them has been found to be stable at finite temperatures and to undergo a phase transition to the disordered state. The remaining two ordered states have been found to be stable in the ground state only. At finite temperatures, the ordering has been demonstrated to be destroyed due to large entropic effects.Comment: 15 pages, 15 figure

    Triple correlation for detection of damage-related nonlinearities in composite structures

    Get PDF
    Nonlinear effects in vibration responses are investigated for the undamaged composite plate and the composite plate with a delamination. The analysis is focused on higher harmonic generation in vibration responses for various excitation amplitude levels. This effect is investigated using the triple correlation technique. The dynamics of composite plate was modelled using two-dimensional finite elements and the classical lamination theory. The doubled-node approach was used to model delamination area. Mode shapes and natural frequencies were estimated based on numerical models. Next, the delamination divergence analysis was used to obtain relative displacements for delaminated plies. Experimental modal analysis test was carried out to verify the numerical models. The two strongest vibration modes as well as two vibration modes with the smallest and largest motion level of delaminated plies were selected for nonlinear vibration test. The Fisher criterion was employed to verify the effectiveness and confidence level of the proposed technique. The results show that the method can be used not only to reveal nonlinearities, but also to reliably detect impact damage in composites. These results are confirmed using the statistical analysis

    Damage detection by using FBGs and strain field pattern recognition techniques

    Get PDF
    A novel methodology for damage detection and location in structures is proposed. The methodology is based on strain measurements and consists in the development of strain field pattern recognition techniques. The aforementioned are based on PCA (principal component analysis) and damage indices (T 2 and Q). We propose the use of fiber Bragg gratings (FBGs) as strain sensor

    A time-frequency analysis approach for condition monitoring of a wind turbine gearbox under varying load conditions

    Get PDF
    This paper deals with the condition monitoring of wind turbine gearboxes under varying operating conditions. Generally, gearbox systems include nonlinearities so a simplified nonlinear gear model is developed, on which the time–frequency analysis method proposed is first applied for the easiest understanding of the challenges faced. The effect of varying loads is examined in the simulations and later on in real wind turbine gearbox experimental data. The Empirical Mode Decomposition (EMD) method is used to decompose the vibration signals into meaningful signal components associated with specific frequency bands of the signal. The mode mixing problem of the EMD is examined in the simulation part and the results in that part of the paper suggest that further research might be of interest in condition monitoring terms. For the amplitude–frequency demodulation of the signal components produced, the Hilbert Transform (HT) is used as a standard method. In addition, the Teager–Kaiser energy operator (TKEO), combined with an energy separation algorithm, is a recent alternative method, the performance of which is tested in the paper too. The results show that the TKEO approach is a promising alternative to the HT, since it can improve the estimation of the instantaneous spectral characteristics of the vibration data under certain conditions

    Rescaled Local Interaction Simulation Approach for Shear Wave Propagation Modelling in Magnetic Resonance Elastography

    Get PDF
    Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort

    Damage detection and location in woven fabric CFRP laminate panels

    Get PDF
    The need for multifunctional carbon fibre composite laminates has emerged to improve the reliability and safety of carbon fibre composite components and decrease costs. The development of an electrical selfsensing system for woven fabric carbon fibre composite laminate panels which can detect and locate damage due to impact events is presented. The electrical sensing system uses a four probe electrical resistance method. Two different sensing mats are investigated, the main difference between them are the surface area of the electrodes and the distance between the electrodes. To investigate the damage sensitivity of the sensing system for woven fabric carbon fibre composite laminate panels, panels are produced with various thicknesses from 0.84 to 3.5 mm and are impacted at energies from 1 to 10 J to generate barely visible impact damage. Damage is detected using global electrical resistance changes, the changes in electrical resistance vary depending on carbon fibre volume fraction, spacing distance between the sensing electrodes in the sensing mats, the surface area of the electrodes, damage size, and damage type; it is found that the thicker the panel, the less sensitive the electrical resistance system is. The effect of the surface area of the sensing electrodes is high on the electrical resistance baseline, where the baseline increases by up to 55% when the surface area of the sensing electrodes increases from 100 mm2 to 400 mm2; while spacing distance between electrodes has a greater effect on damage sensitivity of the electrical resistance sensing system than the surface area of the sensing electrodes

    Long-Term Efficacy, Safety, and Tolerability of Indinavir-Based Therapy in Protease Inhibitor—Naive Adults with Advanced HIV Infection

    Get PDF
    A double-blind, randomized study of zidovudine-experienced, PI- and lamivudine-naive adults with baseline CD4 cell counts of ⩽50 cells/mm3 had demonstrated that the HIV suppression achieved with zidovudine, lamivudine, and indinavir therapy was superior to that achieved with dual-nucleoside or indinavir-only regimens after 24 weeks of therapy. In a 192-week extension of the study, 371 participants received open-label indinavir with or without other antiretroviral drugs. One hundred and eight subjects were originally randomized to receive triple therapy. After 216 weeks, the proportion of subjects with HIV RNA levels of <500 copies/mL were 34%, according to a general estimating equation analysis, 92%, according to an observed data analysis, and 24%, according to an intention-to-treat analysis counting noncompleters as failures; the proportions of subjects with HIV RNA levels of <50 copies/mL were 31%, 85%, and 22%, respectively. Hyperbilirubinemia (experienced by 31% of subjects), nausea (17%), abdominal pain (14%), and nephrolithiasis (13%) were the most common drug-related adverse events during the extensio
    corecore